Microprocessor & Interfacing
Lecture 20
Logic Instructions

O

Contents

O

Introduction

O

Logic Instructions

O

* These instructions perform logical operations on data
stored in registers, memory and status flags.

* The logical operations are:
e AND
e OR
* XOR
* Rotate

e Compare

¢ Complement

Logic Instructions

The logic instructions include

AND
OR

XOR (Exclusive-OR)

Mnemonic Meaning Format Operation Flags Affected
AND | Logical AND ANDD,S (S) (D)= (D) OF, SF, ZF, PF, CF
AF undefined
OR Logical Inclusive"OR { ORD,S S)+ D)= D) OF, SF, ZF, PE, CF
AF undefined
XOR | Logical ExclusiveOR | XORD,S (S)yed)~ (D) OF, SF, ZF, PF, CF
_ AF undefined
NOT | Logical NOT ~NOTD (D)= (D) None

R ——————— T —

cont..

ot |

Register Register
Register Memory
| <tar _—
Register Immediate
Memory Immediate Register
Accumulator Immaediate Memory
Allowed operands for AND, OR, and Allowed operands

XOR instructions for NOT instruction

PSW (Program Status Word)

O

AND, OR, XOR

O

* Any 8-bit data, or the contents of register, or memory
location can logically have

» AND operation
* OR operation

* XOR operation
with the contents of accumulator.

* The result is stored in accumulator.

Compare

O

* Any 8-bit data, or the contents of register, or memory
location can be compares for:

» Equality
e Greater Than

e LLess Than

with the contents of accumulator.

* The result is reflected in status flags.

Complement

O

Logical Instructions

O

CMP

R Compare register or memeory with
M accumulator

* The contents of the operand (register or memory) are
compared with the contents of the accumulator.

* Both contents are preserved .

* The result of the comparison is shown by setting the
flags of the PSW as follows:

CMP

R Compare register or memory with
M accumulator

* if (A) < (reg/mem): carry flag is set

* if (A) = (reg/mem): zero flag is set

e if (A) > (reg/mem): carry and zero flags are reset.

- * Example: CMP B or CMP M

Logical Instructions

()

CPI 8-bit data Compare immediate with accumulator

* The 8-bit data is compared with the contents of
accumulator.

* The values being compared remain unchanged.

* The result of the comparison is shown by setting the
flags of the PSW as follows:

CPI 8-bit data Compare immediate with accumulator

if (A) < data: carry flag is set

if (A) = data: zero flag is set

if (A) > data: carry and zero flags are reset

* Example: CPI 8gH

Logical Instructions

()

ANA R Logical AND register or memory with
LY | accumulator

* The contents of the accumulator are logically ANDed with the contents
of register or memory.
* The result is placed in the accumulator.

* If the operand is a memory location, its address is specified by the
contents of H-L pair.

* S, Z, Pare modified to reflect the result of the operation.
e (CY is reset and AC is set.
* Example: ANA B or ANA M.

ANI 8-bit data Logical AND immediate with accumulator

* The contents of the accumulator are logically ANDed with
the 8-bit data.

* The result is placed in the accumulator.
» S, 7, P are modified to reflect the result.
* CY is reset, AC is set.
* Example: ANI 86H.

Logical Instructions
)

ORA R Logical OR register or memory with
M accumulator

The contents of the accumulator are logically ORed with the contents of the register or
mem-:ir],-'.

The result is placed in the accumulator.

If the Dperand is a memory location, its address is speciﬂed by the contents of H-L pair.

S, Z, P are modified to reflect the result,

CY and AC are reset.

L] E:x.a.mple'. ORA B or ORA M.

ORI 8-bit data Logical OR immediate with accumulator

The contents of the accumulator are logically ORed with

the 8-bit data.

The result is placed in the accumulator.

S, Z, P are modified to reflect the result.
CY and AC are reset.

_] Exa_mple: ORI 86H.

Logical Instructions

()

XRA

R Logical XOR register or memory with
M accumulator

The contents of the accumulator are XORed with the contents of
the register or memory.

s

The result is placed in the accumulator.

If the operand is a memory location, its address is specified by
the contents of H-L pair.

S, Z, P are modified to reflect the result of the operation.
CY and AC are reset.

* Example: XRA B or XRA M.

XRI 8-bit data HNOR immediate with accumulator

* The contents of the accumulator are XORed with the
8-bit data.

* The result is placed in the accumulator.

* S, Z, P are modified to reflect the result.

_ e CY and AC are reset.

» Example: XRI 86H.

Logical Instructions
[

RATL None Rotate accumulator left through carry

* Each binary bit of the accumulator is rotated left by one
position through the Carry flag.

L]

Bit D7 is placed in the Carry flag, and the Carry flag is

placed in the least Significant position Do.

L

CY is modified according to bit D.
S, Z., P, AC are not affected.
* Example: RAL.

RAR None Rotate accumulator right through carry

L

* Each binary bit of the accumulator is rotated right by one
position through the Carry flag.

¢ Bit Do is placed in the Carry flag, and the Carry flag is
placed in the most significant position D7.

* CY is modified according to bit Do.

_ e S, 7, P AC are not affected.
L J

Example: RAR.

Circular Left shift

O

“Opcode | Operand | Description

RLC None Rotate accumulator left

* Each binary bit of the accumulator is rotated left by one
position.

* Bit D7 is placed in the position of Do as well as in the Carry
flag.

* CY is modified according to bit D7.
o S 7, P, AC are not affected.
* Example: RLC.

Circular right shift

O

RRC None Rotate accumulator right

* Each binary bit of the accumulator is rotated right by one
position.

* Bit Do is placed in the position of D7 as well as in the Carry
flag.

* CY is modified according to bit Do.
o S 7, P, AC are not affected.
* Example: RRC.

Logical Instructions

O

[tipooae | pezand | iptian

CMA None Complement accumulator

* The contents of the accumulator are complemented.
* No flags are affected.
* Example: CMA.

CMC None Complement carry

* The Carry flag is complemented.
* No other flags are affected.
* Example: CMC.

Logical Instructions

O

Opcode Operand Description

* The Carry flag is set to 1.

* No other flags are affected.
* Example: STC.

Example

Describe the results of executing the following instructions?
MOV AL, 01010101B
AND AL, 00011111B
OR AL, 11000000B
XOR AL, 00001111B
NOT AL
Solution:
(AL)=01010101, . 00011111,= 00010101,=154
Executing the OR instruction, we get
(AL)= 00010101, +11000000,=11010101,=D5,4
Executing the XOR instruction, we get
(AL)= 11010101, XOR 00001111,=11011010,=DA
Executing the NOT instruction, we get
(AL)=(NOT)11011010, = 00100101,=25,,4

Example

Masking and setting bits in a register
Solution: Mask off the upper 12 bits of the word of data in AX
AND AX, 000F

Setting B4 of the byte at the offset address CONTROL_FLAGS
MOV AL, [CONTROL_FLAGS]
OR AL, 10H

MOV [CONTROL_FLAGS], AL

Executing the above instructions, we get (AL)=XXXXXXXX,
+00010000,= XXX1IXXXX,

Shift Instructions

Mnemonic Meaning Format - - Operation Flags Affected
SAL/SHL | Shift arithmetic | SAL/SHL D,Count | Shiftthe (D) Ieft by the number CF, PF, SF, ZF
left/shift of bit pOsItiﬂhﬁ equal to Count AF undefined
logical left and fill the vacated bits positions | OF undefined if count # 1
_ on the right with zeros
SHR Shift logical SHR D,Count Shift the (D) right by the number | CF, PF, SF, ZF
right of bit positions equal to Count AF Uridefined

and fill the vacated bit positions
on the left with zeros

SAR Shift arithmetic | SAR D,Count Shift the (D) right by the number
right of bit positions equal to Count
and fill the vacated bit positions
on the left with the original most
significant bit

OF undefined if count # 1

SF, ZF, PF, CF
AF undefined
OF undefined if count #1

cont..

Shift instructions: SHL, SHR, SAL, SAR

Destination Count

Register 1
Register CL
Memory 1
Memory CL

Allowed operands for shift instructions

Before

Bit 15

cont..

Bit 0

0

1 ocjo 0

//////

After 0

1

i

0 0 0 1

0 [e—0

CF

AX

Before

Bit 15

Bit 15

Bit 0

Bit 0

After 0= 0

- AN

0

it15

Bit0

Before

\\\\\\\\\\\\

0

170

After

110

SHL AX, 1

SHR AX, CL
(CL)=2

SAR AX, CL
(CL)=2

Example

Assume that CL contains 02,; and AX contains 091A,;.
Determine the new contents of AX and the carry flag after
the instruction SAR AX, CL Is executed

Solution:

(AX)=0000001001000110,=0246,, and the carry flag Is
(CF)=1,

Example

Isolate the bit B3 of the byte at the offset address
CONTROL_FLAGS.

Solution:
MOV AL, [CONTROL_ FLAGS]
MOV CL, 04H
SHR AL, CL

Executing the instructions, we get
(AL)=0000B,B,B.B,
(CF)=B;

Rotate Instructions

Rotate instructions: ROL, ROR, RCL, RCR

Mnemonic Meaning Format Operation Flags Affected
ROL Rotate left ROL D,Count [Rotate the (D) left by the number of bit CF
positions equal to Count. Each bit OF undefined
shifted out from the leftmost bit goes if count #1
back into the rightmost bit position,
ROR ' [Rotate right ROR D,Count{Rotate the '(D) right by the number of bit | CF
- positions equal to Count, Each bit shifted | OF undefined
out from the rightmost bit goes into if count#1
the leftmost bit position.
RCL Rotate left RCL D,Count |Same as ROL except carry is attached to CF
through carry (D) for rotation. OF undefined
' if count %1
RCR Rotate right RCR D,Count Same as ROR except carry is attached to CF
through carry (D) for rotation. OF undefined

f count #1

(a)

cont..

Register
Register
Memory
Memory

(b)

AX 8it 15 Bit0 CF

Before - 0 | 0| O 1 0| 0 1 ol O 0

L

AX Bit 15 Bit 0

Before 0 o|jloj]OCfj1oOo]j]O]T}fO]oO}O{VYV]1T]O]l1T]O]O

ROR AX, CL
(CL)=4

AX

After 0
CF l Bit15 & '}

cont..

For RCL, RCR, the bits are rotate through the carry
flag

CF Bit15 Bit 0

AU LTI Tk

Example

What is the result in BX and CF after execution of the following
Instructions?

RCR BX, CL

Assume that, prior to execution of the instruction, (CL)=04,
(BX)=1234,,, and (CF)=0

Solution:

The original contents of BX are (BX) = 0001001000110100, =
1234

Execution of the RCR command causes a 4-bit rotate right through
carry to take place on the data in BX, the results are

(BX) = 1000000100100011, = 8123,

(CF) =0,

Example

Disassembly and addition of 2 hexadecimal digits stored as a
byte in memory.

Solution:

MOV AL, [HEX DIGITS]
MOV BL, AL

MOV CL, 04H

ROR BL, CL

AND AL, OFH

AND BL, OFH

ADD AL, BL

